
Java Programming
MODULE-1

(Inheritance)

By

Dr. N. Ramana
Associate Professor

UCE(KSM), Kakatiya University

➢ Able to solve real world problems using OOP techniques.

➢ Able to understand the use of abstract classes.

➢ Able to solve problems using java collection framework and I/o classes.

➢ Able to develop multithreaded applications with synchronization.

➢ Able to develop applets for web applications.

➢ Able to design GUI based applications

Course Outcomes

Agenda

✓ Inheritance basics

✓ Member access

✓ Constructors

✓ Creating Multilevel hierarchy

✓ super uses, using final with inheritance

✓ Polymorphism-ad hoc polymorphism pure polymorphism

✓ abstract classes, Object class

✓ forms of inheritance

✓ benefits of inheritance & costs of inheritance.

Java Inheritance Basics

The inheritance can be defined as follows:

➢ The inheritance is the process of acquiring the properties of one class to another

class.

Inheritance Basics

➢ In inheritance, we use the terms like parent class, child class, base class, derived

class, superclass, and subclass.

➢ The Parent class is the class which provides features to another class. The parent

class is also known as Base class or Superclass.

➢ The Child class is the class which receives features from another class. The child

class is also known as the Derived Class or Subclass.

Types of Inheritance

There are five types of inheritances, and they are as follows.

➢Simple Inheritance (or) Single Inheritance

➢Multiple Inheritance

➢Multi-Level Inheritance

➢Hierarchical Inheritance

➢Hybrid Inheritance

Types of Inheritance

In java, we use the keyword extends to create a child class. The following syntax used to

create a child class in java.

Creating Child Class in java

Syntax

class <ChildClassName> extends <ParentClassName>
{
 ...
 //Implementation of child class
...
}

.

class ParentClass
{
 int a;
 void setData(int a)
 {
 this.a = a;
 }
}

class ChildClass extends ParentClass
{
 void showData()
 {
 System.out.println("Value of a is " + a);
 }
}

Example for Single Inheritance in java- Example

public class SingleInheritance
{
 public static void main(String[] args)
 {
 ChildClass obj = new ChildClass();
 obj.setData(100);
 obj.showData();
 }
}

Multi-level Inheritance in java- Example

class ParentClass
{

int a;
void setData(int a)
{
this.a = a;
}

}
class ChildClass extends ParentClass

{
void showData()
{
System.out.println("Value of a is " + a);
}

}
class ChildChildClass extends ChildClass

{
void display()
{
System.out.println("Inside ChildChildClass!");
 } }

public class MultipleInheritance

{

public static void main(String[] args)

{

ChildChildClass obj = new ChildChildClass();

obj.setData(100);

obj.showData();

obj.display();

}

}

Hierarchical Inheritance in java- Example

class ParentClass
{

 int a;
 void setData(int a)
 {
 this.a = a;
 }

 }
 class ChildClass extends ParentClass

{
 void showData()

 {
 System.out.println("Inside ChildClass!");
 System.out.println("Value of a is " + a);
 }

}
class ChildClassToo extends ParentClass
 {

void display()

{
System.out.println("Inside ChildClassToo!");
 System.out.println("Value of a is " + a);
 }

}
public class HierarchicalInheritance

 {
 public static void main(String[] args)
 {

ChildClass child_obj = new ChildClass();
child_obj.setData(100);
child_obj.showData();
ChildClassToo childToo_obj = new ChildClassToo();
childToo_obj.setData(200);
 childToo_obj.display();

 }
 }

Java Access Modifiers

In Java, the access specifiers (also known as access modifiers) used to restrict the scope or

accessibility of a class, constructor, variable, method or data member of class and

interface. There are four access specifiers, and their list is below.

➢ default (or) no modifier

➢ public

➢ protected

➢ private

Java Access Modifiers

✓ The public members can be accessed everywhere.

✓ The private members can be accessed only inside the same class.

✓ The protected members are accessible to every child class (same package or

other packages).

✓ The default members are accessible within the same package but not outside

the package.

class ParentClass

{

int a = 10;

public int b = 20;

protected int c = 30;

private int d = 40;

void showData()

{

System.out.println("Inside ParentClass");

System.out.println("a = " + a);

System.out.println("b = " + b);

System.out.println("c = " + c);

System.out.println("d = " + d);

} }

class ChildClass extends ParentClass
{
void accessData()
{
System.out.println("Inside ChildClass");
System.out.println("a = " + a);
System.out.println("b = " + b);
System.out.println("c = " + c);
//System.out.println("d = " + d); // private member can't
be accessed
}
 }
public class AccessModifiersExample
{
public static void main(String[] args)
{
ChildClass obj = new ChildClass();
obj.showData();
obj.accessData();
}

Example

Java Constructors in Inheritance

✓ It is very important to understand how the constructors get executed in the inheritance

concept. In the inheritance, the constructors never get inherited to any child class.

✓ In java, the default constructor of a parent class called automatically by the constructor of

its child class. That means when we create an object of the child class, the parent class

constructor executed, followed by the child class constructor executed.

class ParentClass

{

 int a;

ParentClass()

{

System.out.println("Inside ParentClass constructor!");

 }

 }

Example

class ChildClass extends ParentClass
{
 ChildClass()
 {
 System.out.println("Inside ChildClass constructor!!");
 } }

class ChildChildClass extends ChildClass
{
ChildChildClass()
 {
 System.out.println("Inside ChildChildClass constructor!!");
 } }

public class ConstructorInInheritance
{
public static void main(String[] args)

{
ChildChildClass obj = new ChildChildClass();
}

}

Java super keyword

In java, super is a keyword used to refers to the parent class object. The super keyword

came into existence to solve the naming conflicts in the inheritance. When both parent

class and child class have members with the same name, then the super keyword is

used to refer to the parent class version.

In java, the super keyword is used for the following purposes.

1. To refer parent class data members

2. To refer parent class methods

3. To call parent class constructor

super : to refer parent class data members

When both parent class and child class have data members with the same name, then

the super keyword is used to refer to the parent class data member from child class.

class ParentClass
{
int num = 10;
 }

class ChildClass extends ParentClass
{
int num = 20;
void showData()
 {
System.out.println("Inside the ChildClass");
System.out.println("ChildClass num = " + num);
System.out.println("ParentClass num = " + super.num);

 }
}

public class SuperKeywordExample
 {
public static void main(String[] args)

{
ChildClass obj = new ChildClass();
obj.showData();
System.out.println("\nInside the non-child class");
System.out.println("ChildClass num = " + obj.num);

//System.out.println("ParentClass num = " +
super.num); //super can't be used here

}
 }

super: to refer parent class method

When both parent class and child class have method with the same name, then the

super keyword is used to refer to the parent class method from child class.

class ParentClass
{
int num1 = 10;
void showData()
{
System.out.println("\nInside the ParentClass
showData method");
System.out.println("ChildClass num = " +
num1);

 }
 }

 class ChildClass extends ParentClass
{
int num2 = 20;

void showData()
 {
 System.out.println("\nInside the ChildClass showData
method"); System.out.println("ChildClass num = " +
num2);
 super.showData();
}
 }
public class SuperKeywordExample
 {
 public static void main(String[] args)
 {
ChildClass obj = new ChildClass();
 obj.showData();
 //super.showData(); // super can't be used here
}
}

When an object of child class is created, it automatically calls the parent class default-

constructor before it's own. But, the parameterized constructor of parent class must be called

explicitly using the super keyword inside the child class constructor.

super: to call parent class constructor

class ParentClass
{
int num1;
 ParentClass()
{
System.out.println("\nInside the ParentClass
default constructor");
 num1 = 10;
}
ParentClass(int value)
{
System.out.println("\nInside the ParentClass
parameterized constructor"); num1 = value;

 }
 }

class ChildClass extends ParentClass
{
int num2;
 ChildClass()
{
super(100);
 System.out.println("\nInside the ChildClass
constructor");
 num2 = 200;
}
}
public class SuperKeywordExample { public static
void main(String[] args)
 {
 ChildClass obj = new ChildClass(); }

Java final keyword

In java, the final is a keyword and it is used with the following things.

✓ With variable (to create constant)

✓ With method (to avoid method overriding)

✓ With class (to avoid inheritance)

✓ final with variables

When a variable defined with the final keyword, it becomes a constant, and it does not

allow us to modify the value. The variable defined with the final keyword allows only a

one-time assignment, once a value assigned to it, never allows us to change it again.

public class FinalVariableExample

{

 public static void main(String[] args)

{

final int a = 10;

System.out.println("a = " + a);

a = 100; // Can't be modified

}

}

final with variables

When a method defined with the final keyword, it does not allow it to override. The final

method extends to the child class, but the child class can not override or re-define it. It must be

used as it has implemented in the parent class.

final with methods

class ParentClass
{
int num = 10;
 final void showData()
 {
 System.out.println("Inside ParentClass showData() method");
System.out.println("num = " + num);
}
}
 class ChildClass extends ParentClass
{
void showData()
{
System.out.println("Inside ChildClass showData() method");
System.out.println("num = " + num);

}
}
public class FinalKeywordExample
 {
 public static void main(String[] args)
 {
 ChildClass obj = new ChildClass();
 obj.showData();
}
}

When a class defined with final keyword, it can not be extended by any other class.

final with class

final class ParentClass
{
 int num = 10;
void showData()
 {
System.out.println("Inside ParentClass showData() method"); System.out.println("num = " + num);
}
}
class ChildClass extends ParentClass
{

}
public class FinalKeywordExample
{
 public static void main(String[] args)
 {
 ChildClass obj = new ChildClass();
 }
 }

Java Polymorphism

➢The polymorphism is the process of defining same method with different

implementation. That means creating multiple methods with different behaviors.

➢In java, polymorphism implemented using method overloading and method

overriding.

➢Polymorphism can be

• Adhoc polymorphism

• Pure polymorphism

Ad hoc polymorphism

➢The ad hoc polymorphism is a technique used to define the same method with

different implementations and different arguments.

➢ In a java programming language, ad hoc polymorphism carried out with a method

overloading concept. In ad hoc polymorphism the method binding happens at the

time of compilation.

➢Ad hoc polymorphism is also known as compile-time polymorphism. Every function

call binded with the respective overloaded method based on the arguments.

➢The ad hoc polymorphism implemented within the class only.

import java.util.Arrays;
public class AdHocPolymorphismExample
{
void sorting(int[] list)
{
Arrays.parallelSort(list);
System.out.println("Integers after sort: " + Arrays.toString(list));
}
void sorting(String[] names)
{
 Arrays.parallelSort(names);
System.out.println("Names after sort: " + Arrays.toString(names));
 }
public static void main(String[] args)
{
AdHocPolymorphismExample obj = new AdHocPolymorphismExample();
int list[] = {2, 3, 1, 5, 4};
obj.sorting(list); // Calling with integer array
String[] names = {"rama", "raja", "shyam", "seeta"};
obj.sorting(names); // Calling with String array
 }
 }

Pure polymorphism

➢ The pure polymorphism is a technique used to define the same method with the

same arguments but different implementations. In a java programming language,

pure polymorphism carried out with a method overriding concept.

➢ In pure polymorphism, the method binding happens at run time. Pure

polymorphism is also known as run-time polymorphism. Every function call

binding with the respective overridden method based on the object reference.

➢ When a child class has a definition for a member function of the parent class, the

parent class function is said to be overridden.

➢ The pure polymorphism implemented in the inheritance concept only.

class ParentClass
{
 int num = 10;
 void showData()
 {
System.out.println("Inside ParentClass showData() method");
System.out.println("num = " + num);
 }
}
class ChildClass extends ParentClass
{
void showData()
{
System.out.println("Inside ChildClass showData() method");
System.out.println("num = " + num);
}
}
public class PurePolymorphism
{

public static void main(String[] args)
 {
ParentClass obj = new ParentClass();
obj.showData();
obj = new ChildClass();
obj.showData();
}
}

➢ Static methods can not be overridden.

➢ Final methods can not be overridden.

➢ Private methods can not be overridden.

➢ Constructor can not be overridden.

➢ An abstract method must be overridden.

➢ Use super keyword to invoke overridden method from child class.

➢ The return type of the overriding method must be same as the parent has it.

➢ The access specifier of the overriding method can be changed, but the visibility must

increase but not decrease.

Rules for method overriding

Java Abstract Class

➢ An abstract class is a class that created using abstract keyword. In other words, a

class prefixed with abstract keyword is known as an abstract class.

➢ In java, an abstract class may contain abstract methods (methods without

implementation) and also non-abstract methods (methods with implementation).

➢ We use the following syntax to create an abstract class.

Syntax

 abstract class <ClassName>

 {

 ...

 }

Java Object Class

➢ In java, the Object class is the super most class of any class hierarchy. The Object

class in the java programming language is present inside the java.lang package.

➢ Every class in the java programming language is a subclass of Object class by default.

➢ The Object class is useful when you want to refer to any object whose type you don't

know. Because it is the superclass of all other classes in java, it can refer to any type

of object.

Methods of Object class

➢ The following table depicts all built-in methods of Object class in java.

Method Description Return Value

getClass() Returns Class class object object

hashCode() returns the hashcode number for
object being used.

int

equals(Object obj) compares the argument object to
calling object.

boolean

clone() Compares two strings, ignoring case int

concat(String) Creates copy of invoking object object

toString() eturns the string representation of
invoking object.

String

notify() wakes up a thread, waiting on invoking
object's monitor.

void

notifyAll() wakes up all the threads, waiting on
invoking object's monitor.

void

wait() causes the current thread to wait,
until another thread notifies.

void

wait(long,int) causes the current thread to wait for
the specified milliseconds and

nanoseconds, until another thread
notifies.

void

finalize() It is invoked by the garbage collector
before an object is being garbage

collected.

void

Java Forms of Inheritance

The following are the differnt forms of inheritance in java.

1. Specialization

2. Specification

3. Construction

4. Extension

5. Limitation

6. Combination

Java Forms of Inheritance

1. Specialization

It is the most ideal form of inheritance. The subclass is a special case of the parent

class. It holds the principle of substitutability.

2. Specification

This is another commonly used form of inheritance. In this form of inheritance, the

parent class just specifies which methods should be available to the child class but

doesn't implement them.

3. Construction

This is another form of inheritance where the child class may change the behavior

defined by the parent class (overriding). It does not hold the principle of

substitutability.

4. Extension

This is another form of inheritance where the child class may add its new properties.

It holds the principle of substitutability.

5. Limitation

This is another form of inheritance where the subclass restricts the inherited

behavior. It does not hold the principle of substitutability.

6. Combination

This is another form of inheritance where the subclass inherits properties from

multiple parent classes. Java does not support multiple inheritance type.

Benefits of Inheritance

➢ Inheritance helps in code reuse. The child class may use the code defined in the

parent class without re-writing it.

➢ Inheritance can save time and effort as the main code need not be written again.

➢ Inheritance provides a clear model structure which is easy to understand.

➢An inheritance leads to less development and maintenance costs.

➢With inheritance, we will be able to override the methods of the base class so that the

meaningful implementation of the base class method can be designed in the derived

class. An inheritance leads to less development and maintenance costs.

➢ In inheritance base class can decide to keep some data private so that it cannot be

altered by the derived class.

Costs of Inheritance

➢ Inheritance decreases the execution speed due to the increased time and effort it

takes, the program to jump through all the levels of overloaded classes.

➢ Inheritance makes the two classes (base and inherited class) get tightly coupled. This

means one cannot be used independently of each other.

➢ The changes made in the parent class will affect the behavior of child class too.

➢ The overuse of inheritance makes the program more complex.

1. What is inheritance in object-oriented programming?

2. How does inheritance promote code reusability?

3. What is the difference between single inheritance and multiple inheritance?

4. What is a superclass and a subclass?

5. How are members (fields and methods) accessed in a class hierarchy?

6. What is the difference between public, protected, and private access modifiers?

7. How does the protected access modifier differ from private in terms of inheritance?

8. How does a subclass call the constructor of its superclass?

Questions

9. How is the super keyword used in Java?

10. What does it mean to declare a class as final?

11. What is an abstract class?

12. How does an abstract class differ from a concrete class?

Questions

	Slide 1: Java Programming MODULE-1 (Inheritance)
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

