Java programming
MODULE-2
(Packages)

By

Dr. N. Ramana

Associate Professor
UCE(KSM), Kakatiya University

Course Qutcomes

» Able to solve real world problems using OOP techniques.

» Able to understand the use of abstract classes.

» Able to solve problems using java collection framework and I/o classes.
» Able to develop multithreaded applications with synchronization.

» Able to develop applets for web applications.

» Able to design GUI based applications

Agenda

v Defining a Package,

v Access protection

v" importing packages.

v Interfaces- defining an interface
v" implementing interfaces

v" Nested interfaces

v variables in interfaces and extending interfaces.

Defining Packages in java

» In java, a package is a container of classes, interfaces, and sub-packages. We may
think of it as a folder in a file directory.
» We use the packages to avoid naming conflicts and to organize project-related
classes, interfaces, and sub-packages into a bundle.
» |In java, the packages have divided into two types.
1. Built-in Packages

2. User-defined Packages

Built-in Packages
» The built-in packages are the packages from java API. The Java APl is a library of
pre-defined classes, interfaces, and sub-packages. The built-in packages were
included in the JDK.
» There are many built-in packages in java, few of them are as java, lang, io, util,
awt, javax, swing, net, sql, etc.
» We need to import the built-in packages to use them in our program. To import a

package, we use the import statement.

User-defined Packages
The user-defined packages are the packages created by the user. User is free to
create their own packages.
Defining Packages in java
Syntax

package packageName,;

Example

package myPackage

public class DefiningPackage
public static void main(String[] args

System.out.printIn("This class belongs to myPackage."

v" Now, save the above code in a file DefiningPackage.java, and compile it using the following command.

v" The above command creates a directory with the package name myPackage, and

the DefiningPackage.class is saved into it.

v" Run the program use the following command.

Access protection in java packages

» In java, the access modifiers define the accessibility of the class and its members. For
example, private members are accessible within the same class members only. Java
has four access modifiers, and they are default, private, protected, and public.

» In java, the package is a container of classes, sub-classes, interfaces, and sub-
packages. The class acts as a container of data and methods. So, the access modifier
decides the accessibility of class members across the different packages.

» In java, the accessibility of the members of a class or interface depends on its access
specifiers.

» The following table provides information about the visibility of both data members

and methods.

Access control for members of class and interface in java

Access Location Same Class Same PaCkage Other PaCkage
Specifier Chlld class Non-child class Child class Non child class

Protected Yes Yes Yes Yes No

Importing Packages in java

» In java, the import keyword used to import built-in and user-defined packages. When a
package has imported, we can refer to all the classes of that package using their name
directly.

» The import statement must be after the package statement, and before any other
statement.

» Using an import statement, we may import a specific class or all the classes from a package.

Importing specific class

» Using an importing statement, we can import a specific class. The following syntax is
employed to import a specific class.

Syntax

Example

package myPackage;
import java.util.Scanner;
public class ImportingExample

{

public static void main(String[] args)

{

Scanner read = new Scanner(System.in);

int i = read.nextInt(); System.out.println("You have entered a number " + i);

}

Importing all the classes

» Using an importing statement, we can import all the classes of a package. To import
all the classes of the package, we use * symbol. The following syntax is employed to
import all the classes of a package.

Syntax
import packageName.*;
Example
import java.util.*;
» The above import statement util is a sub-package of java package. It imports all the

classes of util package only, but not classes of java package.

Defining an interface in java

» |In java, an interface is similar to a class, but it contains abstract methods and static final
variables only.

» We may think of an interface as a completely abstract class. None of the methods in the
interface has an implementation, and all the variables in the interface are constants.

» All the methods of an interface, implemented by the class that implements it.

» The interface in java enables java to support multiple-inheritance. An interface may extend
only one interface, but a class may implement any number of interfaces.

» We use the keyword interface to define an interface. All the members of an interface are
public by default. The following is the syntax for defining an interface.

interface InterfaceName

{

... members declaration; ... }

Implementing an Interface in java

» Injava, an interface is implemented by a class. The class that implements an interface must

provide code for all the methods defined in the interface, otherwise, it must be defined as

an abstract class.

» The class uses a keyword implements to implement an interface. A class can implement any
number of interfaces. When a class wants to implement more than one interface, we use
the implements keyword is followed by a comma-separated list of the interfaces
implemented by the class.

Syntax

class className implements InterfaceName

{
... body-of-the-class ... }

Implementing multiple Interfaces

» When a class wants to implement more than one interface, we use
the implements keyword is followed by a comma-separated list of the interfaces
implemented by the class.

» The following is the syntax for defining a class that implements multiple interfaces.

Syntax
class className implements InterfaceNamel, InterfaceName2, ...

{
... body-of-the-class ...

Nested Interfaces in java

» In java, an interface may be defined inside another interface, and also inside a class. The
interface that defined inside another interface or a class is known as nested interface. The
nested interface is also referred as inner interface.

» The nested interface cannot be accessed directly. We can only access the nested interface by
using outer interface or outer class name followed by dot(.), followed by the nested interface

Name.

Nested interface inside another interface

» The nested interface that defined inside another interface must be accessed

as Outerinterface.lnnerinterface.
Nested interface inside a class

» The nested interface that defined inside a class must be accessed as ClassName.lnnerlnterface.

Variables in Java Interfaces

In java, an interface is a completely abstract class. An interface is a container of abstract
methods and static final variables. The interface contains the static final variables. The variables
defined in an interface can not be modified by the class that implements the interface, but it

may use as it defined in the interface.

Example
interface Samplelnterface
{
int UPPER_LIMIT = 100; //int LOWER_LIMIT;
// Error - must be initialised

}

public class InterfaceVariablesExample implements Samplelnterface

{

public static void main(String[] args)

{

System.out.printin("UPPER LIMIT =" + UPPER_LIMIT); // UPPER_LIMIT = 150;
// Can not be modified

}
}

Extending an Interface in java

» In java, an interface can extend another interface. When an interface wants to
extend another interface, it uses the keyword extends.

» The interface that extends another interface has its own members and all the
members defined in its parent interface too.

» The class which implements a child interface needs to provide code for the methods
defined in both child and parent interfaces, otherwise, it needs to be defined as
abstract class.

Example
interface Parentinterface

{
void parentMethod();

}

interface Childinterface extends Parentinterface

{
void childMethod();

}

class ImplementingClass implements Childinterface

{
public void childMethod()

{

System.out.printIn("Child Interface method!!");

}
public void parentMethod()

{
System.out.printIn("Parent Interface mehtod!");
}
}

public class ExtendingAninterface

{

public static void main(String[] args)

{

ImplementingClass obj = new ImplementingClass();

obj.childMethod();
obj.parentMethod(); } }

Questions

= © o N O O bk w0 nh =

o

What is a package in Java?

How do you define a package in a Java program?

Why are packages used in Java?

What is package-private access in Java?

How does the protected access modifier work in the context of inheritance?
What is an interface in Java?

How do you define an interface in Java?

What are the key differences between an interface and an abstract class?

How do you import a package in a Java program?

. What is the difference between importing a specific class and importing all classes in a

package?

	Slide 1: Java programming MODULE-2 (Packages)
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

